Fuzzy particle swarm optimization (FPSO) based feature selection and hybrid kernel distance based possibilistic fuzzy local information C-means (HKD-PFLICM) clustering for churn prediction in telecom industry

نویسندگان

چکیده

Abstract Customer churn has been considered as one of the key issues in operations corporate business sector, it influences turnover directly. In particular, telecom industries are seeking to develop new approaches predict potential customer churn. So, needs appropriate algorithms overcome increasing problem This work proposed a prediction model that employs both strategies classification and clustering, helps recognizing consumers giving reasons after churning subscribers industry telecom. The process information gain fuzzy particle swarm optimization (FPSO) executed by method feature selection, besides divergence kernel-based support vector machine (DKSVM) classifier is employed categorizing customers approach. this way, compelling guidelines on retention have generated since plays vital role relationship management (CRM) suppress churners. After process, divided into clusters through fragmenting data customer. cluster-based offers provided clustering algorithm hybrid kernel distance-based possibilistic local C-means (HKD-PFLICM), whereas measurement distance accomplished functions such hyperbolic tangent Gaussian kernel. results reveal (FPSO- DKSVM) produced better compared other existing K-means, flexible K-Medoids, (FLICM) , FLICM (PFLICM) entropy weighting (EWFLICM). Article highlights major concern most companies performance improved applying artificial intelligence learning techniques. Churn crucial industry, they position maintain their precious organize Relationship Management.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based fuzzy and possibilistic c-means clustering

The 'kernel method' has attracted great attention with the development of support vector machine (SVM) and has been studied in a general way. In this paper, this 'method' is extended to the well-known fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms. It is realized by substitution of a kernel-induced distance metric for the original Euclidean distance, and the corresponding algori...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Particle Swarm Optimization Algorithm Based k-means and Fuzzy c-means clustering

Data mining is the process of extracting hidden patterns from huge data. Among the various clustering algorithms, k-means is the one of most widely used clustering technique in data mining. The performance of k-means clustering depends on the initial clusters and might converge to local optimum. K-means does not guarantee the unique clustering because it generates different results with randoml...

متن کامل

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

Hierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction

As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SN applied sciences

سال: 2021

ISSN: ['2523-3971', '2523-3963']

DOI: https://doi.org/10.1007/s42452-021-04576-7